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Abstract—In this paper, we evaluate the two-tone intermod-
ulation distortion for heterojunction bipolar transistors (HBTYS)
operated at RF. We directly solve the nonlinear differential
equations of the HBT large-signal model in time domain by em-
ploying the wavefor m-relaxation and monotone-iter ative methods.
Based on time-domain results, sinusoidal waveform outputs are
transformed into the frequency domain with the fast Fourier
transform. Furthermore, the output third-order intercept-point
values of the HBT are computed with the spectra. Results for
a fabricated InGaP HBT under different testing conditions are
reported and compared among the HSPICE results, the results
with harmonic balance methodology, and the measured data.
Comparisons among these results show that our method demon-
strates its superiority over the conventional approaches. This
characterization alternative has allowed us to study RF device
properties, perform thermal consumption and sensitivity analysis,
and extract model parameters.

Index Terms—Distortion, heterojunction bipolar transistor
(HBT), intermodulation, output third-order intercept point
(OIP3), RF characterization, transient time analysis.

I. INTRODUCTION

IGH-POWER heterojunction bipolar transistors (HBTS)

operated at high frequencies for power amplification
have been of great interest for wireless applications in recent
years [1]-{5]. One of the favorite properties of HBTs is high
linearity. The linearity varies with the device structures and
should be optimized with respect to the design of the device
structure. For the HBT device linearity, the calculation of
two-tone intermodul ation distortion isimportant to characterize
the device operated at the RF regime. As is known, different
approaches have been proposed to calculate intermodulation
distortion [6]-{16]. The most conventional approach for the
model problem is with the harmonic balance method, which
has been applied for studying large-signa distortion [6]—8].
The Volterra-series method [9]-{16] has been applied for
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small-signal distortion when the device is in weak nonlinearity
conditions. These two methods are in a class of frequency-do-
main approaches and have their merits. A method to evaluate
two-tone intermodulation is to solve the model problem in
the time domain directly. It first performs the analysis with
two-tone input excitation. The fast Fourier transform (FFT)
is applied to convert the time-domain data into the frequency
domain for more analyses and characterizations. However, this
exact and straightforward approach (without any approxima-
tions) heavily relies on a robust, accurate, and efficient solver.
Conventional solution methods applied for solving a set of the
nonlinear ordinary differential equations arising from circuit
models is the Newton's iterative (NI) method or NI-liked
methods. Unfortunately, the NI method is a local method and
it converges quadratically in a sufficiently small neighborhood
of the exact solution. These properties have their limitation
and should be carefully verified in the practical engineering
application. It also does not satisfy the requirements of accuracy
and stability for intermodul ation-distortion analysis.

In this paper, we propose a novel time-domain approach to
the calculation and characterization of the two-tone intermod-
ulation distortion. The waveform-relaxation (WR) [17] and
monotone-iterative (MI) [18] methods are utilized for solving
the large-signa circuit model in time domain. The major
property of our solution methodology is solving the nonlinear
systems with the MI method instead of the NI method. First of
all, aset of nonlinear differential equations are formulated with
the Gummel-Poon (GP) model. All equations are decoupled
with the WR procedure and solved independently with the
MI method. The MI iteration loops will be performed until
the computed results meet the convergence criteria The
time-domain results are then analyzed with the FFT to obtain
necessary information. The Ml method for solving the system
of nonlinear algebraic equations arising from semiconductor
devices simulation has been proposed and successfully devel-
oped earlier by the authors [19]-{21]. The nonlinear model is
solved in the time domain without any approximations, thus,
the accuracy of the distortion analysis with this method is
guaranteed. Based on the method robustness, we significantly
reduce the simulation time for the distortion analysis. Various
testing conditions for a fabricated InGaP HBT are examined
and the characterization results are reported and compared
among the HSPICE results, the results of the harmonic balance
approach, and the measured data. Our approach demonstrates
accurate and robust properties and provides an aternative for
RF application.
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Fig. 1. (@ Circuit for dc smulation. (b) Applied circuit for two-tone
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Fig. 2. GPlarge-signal equivalent-circuit model.

Subseguent sections of this paper are organized as follows.
Section |l introduces the model and characterization method.
Section 111 describes results of calculations; various compar-
isons and analyses are also presented in detail. Section 1V

presents the conclusion.

Il. MODEL FOR HBT CHARACTERIZATION

Fig. 1 shows the HBT circuit in the dc and RF characteriza-
tions, where Vi is the dc-bias voltage and Vi, is the two-tone

input signal. We express V,, in the following form:

Vin = Vi ( cos(wyt) + cos(wat))

TABLE |
SET OF InGaP HBT PARAMETERS FOR THE GP MODEL
Notation Value Unit
IS 2.85E-24 A
BF 86.95 -
NF 1.068 -
IKF 0.1815 A
IKR 1.032E-3 A
ISE 2.34E-18 A
NE 1.91 -
BR 1.47 -
NR 1.06 -
ISC 2.142E-14 A
NC 1.954 -
RB 48.13 Ohm
RB2 8.75 Ohm
RE 1.256 Ohm
RC 6.75 Ohm
CJEO 130.0E-15 F
VIJE 1.367 \%
MIJE 0.1188 -
TF 2.680E-12 Sec
XTF 275.6 -
VTF 66.0 -
CJCO 2427E-15 F
VvIC 0.7161 \
MIC 0.266 -
XCJC 0.3428 -
TR 350.0E-12 Sec
ITF 419.80E-3 A
FC 0.5 -

wherew; = 27 f; and wo = 2n f> aretwo different frequencies
and V,,, is the amplitude of tones.

As shown in Fig. 2, we formulate a set of time-dependent
noda equations with the GP large-signal model [22], [23]. At
the nodes of EX and CX, time-independent algebrai c equations
are formulated. The nodal equations of equivaent circuit by
Kirchhoff’s current law (KCL) are as follows:

Crex <—dt - 7) +Cor <W - W)

dvg dVe

C —_— - — Ir+1
+ JCI<dt dt>+ 2+ Lo

Ier n Vex = Ve
P ite
=0 2

AV dVg Vs dVg
Cpr |22 - ZE) 4y opp (B2 - 2E
DF(dt dt>+ JE(dt dt)

Ier | Vex -V
T R = EELE Co. SRS 2
‘) Rp

=0 3
AV  dVe AV  dVe
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dt
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Set parameters and total number of time steps, and perform DC
simulation to get initial conditions att=0

¥

Set V,, , perform DC simulation for the initial guess, and load previous
time step results as initial conditions at present time step

Decouple the model equations with the WR method l

¥

Solve each decoupled equation by the MI method l<—

Perform MI loop for each equation and execute convergence test for
cach loop

Execute convergence tests for all unknowns and form globat
iteration loop

Get and store the solutions at present time step as the initial
condition for next time step

!

Set t =t + At to perform next time step calculation

Finish the calculation
for all time steps ?

Fig. 3. Flowchart of the proposed solution method.

Crex <%_ dVBX) VB—Vbx | (Vin+Vin)—Vbx

' dt dt Rp Rps

=0 ©)
Ve—Vex | Voo —Vex

R¢ Rees

= (6)
Ve —Vex Vex

Rg Rgg

=0. (7

All the current and capacitor termsin the GP model are func-
tions of bias conditions, with the GP model parameters of the
InGaP HBT used in this paper shown in Tablel.

Fig. 3 presents a flowchart for the proposed WR and M| so-
lution technique in the time domain. Referring to the flowchart,
we first set the necessary parameters for the circuit model. The
total number of time stepsto be solved and thetime-step size At
are also determined. We compute the dc (steady state) results,
which are used for the initial conditions of the time evolution
when the RF signal V;,, isinputted. At each time step, the calcu-
lated results of the previoustime step are used for theinitial con-
ditions at the present time-step simulation. Our computational
procedure includes six M1 solution loops and a global-iteration
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Fig. 5. (a8 Gummel plot. (b) I~—Vsr dc curves of the InGaP HBT circuit.

loops to reach the convergent results. The convergencetests are
for each M| loop, aswell asthe global outer loops. After the con-
vergencetestsfor all M1 loops, we check the convergencefor all
unknown variablesin the outer loop (the so-called global-itera-
tionloop). Oncethe convergence requirementsfor all unknowns
are satisfied at the same global-iteration loop, we output the
computed solutions at the present time step. These solutionsare
then used for the initial conditions at the next time step. If al
of the time steps have been solved, we use the time-domain re-
sultswith the two-tone excitation input to perform the distortion
analysis.
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Fig. 6. Comparison of Vour between: (a) our solver and (b) the HSPICE
simulator, where the input power is set to be —3 dBm.

We extract the intensity of amplitude or power at a specified
frequency from the FFT results using the computed datain the
time domain. When a two-tone input signal V, is applied to a
nonlinear two-port network whose output signal can be repre-
sented by the power series

V, = a1 Vin(®) + as (Vi () + a3(Vin(£)) .

()
Fig. 4 shows the spectrums of input and output signals. The
harmonics are found close to the fundamental frequencies. The
third-order intermodulation (IM3) products play an important
role for the intermodulation linearity of HBT devices. We note
the output amplitudes of fundamental frequencies and IM3
products are a; V,,, and 3a3V;2 /4, and the slopes of the plotted
lines versus V,,, equal 1 and 3 in log scale. The value of the
output third-order intercept point (OIP3) isthe projection of the
cross point of these two extrapolated lines. It is an important
benchmark to evaluate the linearity of the devices at frequency
modulation. The value of OIP3 depends on the device material
and the design of the device structures. In general, the higher
OIP3 vaue represents the better linearity of the two-tone
intermodul ation characteristics.

1e+1
1e+0 |-® Fundamental frequencies
1e-1 |- Y )
— 1e-2
g
o
% le-3 |- IM3 products .
(=9
5 ted | ® / LI
B
= o o (A4
O te5 | e o
]
o %o .°o . " ° *
T |- 847 o L] o..00°’
: o9 @
° [ ® _0g0® . (XY [
1e-7 |- e 00 * %% oe ! . o o®
; i °
1eg Ll | L L L ] 1
0 1e+9 2e+9 3e+9 4e+9 5e+9 Ge+9
Frequency (Hz)
1e+1
[
1e+0 |-
1e-1 _v Fundamental frequencies
% 1e-2 |-
g : o0
g 1le3 |-
’a °
= | Mg
g SO e, *00e
I :,Q:. [ . [ ] L X ¥ o °
1e-5 |- ’ ".' e’ o TN opn om0
‘e .
1e-6 |-
1e.7 Lud I ] ] ] ]
0 1e+9 2e+9 3e+9 4e+9 5e+9 6e+9
Frequency (}Hz)
(b)

Fig. 7. Plotsof the output power spectrum for: (&) our results and (b) HSPICE
results.

I1l. RESULTS AND DISCUSSION

An InGaP HBT device is fabricated and measured in this
work. Fig. 5(a) shows the Gummel plot of the InGaP HBT,
where the lines denote our results with the new method and the
symbols denote HSPI CE results. Both of them have consistency
inthedc condition. Fig. 5(b) isthe calculated I ~—Vgx, curvesto-
gether with the measured data of the InGaP HBT, and the result
is quite in agreement with measurement. Fig. 5 primarily con-
firms the proposed method has its accuracy in dc analysis. As
shown in Fig. 1(b), Fig. 6 demonstrates the time-domain result
of the output voltage (Vour). Over 25 periods are directly cal-
culated in the time domain with the input two-tone excitations.
Theinput signal amplitude denoted as V,,,, equals 0.005 V. The
fundamental frequencies f; and f> are 1.71 and 1.89 GHz, re-
spectively. Fig. 6(a) and (b) presentsour resultsand the HSPICE
results, respectively. Contrary to the HSPICE results, which ini-
tially have some unstable outputs, our simulator presentsitsro-
bustness in the large-signal time-domain analysis.

With the time-domain results shown in Fig. 6(a and
(b), we calculate the spectrums of the output power by the
FFT directly. Fig. 7(a) and (b) is the corresponding spectra
with Fig. 6(a) and (b), respectively. In computing Fig. 7(a),
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Fig. 8. Zoom-in plots investigation and comparison of V... between: (a)—(c) our solver and (d)—(f) the HSPICE simulator.

our simulated data is beginning from the time 0.556 ns
(1 cycle™(1/f.) = 1/1.8 GHz = 0.556 ns). In Fig. 7(b), we
performed the FFT with the HSPICE results beginning from
the time 8.33 ns (15 cycles*(1/f.) = 15/1.8 GHz = 8.33 ns)
and forward. We find the IM3 products a 2f; — fo and
2f, — f1 areclearly observed in Fig. 7(a). However, as shown
in Fig. 7(b), it is difficult to identify the two IM3 products.
Our methodology for large-scale time-domain analysis and
two-tone intermodulation demonstrates its superiority over
some approaches. As shown in Fig. 8(a)—(f), to clarify the
time-domain results cal culated with HSPICE and our approach,
we have performed more computational investigations. It is
found that, as shown in Fig. 8(d)—(f), the outputs of the HSPICE
simulator are erroneous results (marked) until 100 ns outputted.

The input signal applied in this testing is with V,,, = 0.05V,
Veg = 1402V, and Vo = 3.6 V.

The IM3 products at 2f, — f; and 2f; — f» are denoted as
HI-IM3 and LO-IMS, respectively. Fig. 9 is the output powers
at the fundamental frequencies and the IM 3 products versus the
input power. As shown in Fig. 9(a), our calculated slopes are
0.99726 and 3.00606 in that they are almost equal to the theoret-
ical values of 1 and 3, respectively. We note that the HI-IM3 and
LO-IM3 are closed enough and, hence, HI-IM3 and LO-IM3 al-
most have the same OIP3 value at 36.9 dBm. Unfortunately, as
shown in Fig. 9(b), the slopes of the fundamental frequencies
and IM3 products from the HSPICE results equal 0.99964 and
—0.28781, respectively. It leads to a nonpredictable OIP3 value
with the HSPICE results from time-domain analysis.
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Fig. 9. Output power at f, (black-filled symbol) and the IM3 products
(white-filled symbol) versus the input power. (a) Our result. (b) HSPICE result.

For aninput power, we can al so calculate the OIP3 value with
the output power spectrum. If the slopes of the fundamental fre-
guencies and IM3 products are 1.0 and 3.0, the OIP3 value is
directly given by

1
OIP3 = Pf- + 5 (ij, _ PJMS) )

where P- and P™3 are the output powers of the fundamental
frequencies and IM3 products, respectively. Fig. 10 shows
the OIP3 with respect to different spacing (Af = fi — f2)
of fundamental frequency, where the centra frequency
fe = 1/2(f1 + fo) of each OIP3 caculation is identical and
equals 1.8 GHz. As shown in Fig. 10, there are only slight
deviations of OIP3 versus A f. Variation of Af from 360 to
20 MHz produces 0.0180-dBm difference in the LO-OIP3
value (36.5294-36.5014). In addition, the differences between
LO-OIP3 and HI-OIP3 are 0.0719 and 0.0034782 dBm when
the variations are from 360 to 20 MHz. With this obser-
vation, our approach enables us to efficiently calculate the
intermodulation distortion with a larger A f. For example, for
Af = 20 MHz, we have to perform the computation with over
180 periods for FFT transformation. On the other hand, for
Af = 360 MHz, there are only ten periods required. From
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our numerical experience, we would like to point out that our
approach can computeit with anarrow tone spacing of 10 MHz.
In our practical implementation, this method provides a more
efficient computing alternative and may significantly overcome
one of the weaknesses of the conventional time-domain ap-
proaches, such as the enormous computational resources. For
atypical distortion characterization test, we have successfully
reduced the simulation CPU time up to one order of magnitude.

In the investigation of Fig. 10 above, the setup of on-wafer
device testing with a harmonic load—pull system has been con-
structed [24], as shown in Fig. 11. The setting of load—pull sys-
tems and a proper pre-calibration procedure enable us to mea-
sure the input and output power and the intermodulation prop-
erty fromthedeviceitself directly. For the numerical calculation
presented in this paper (the circuits shown in Figs. 1 and 2), we
focus on the properties coming from the equivalent circuit of
the device. The impedance match problem is ignored and the
system is assumed to be an ideal circuit.

Fig. 12(a) shows the OIP3 values versus collector current
density .J.. Our results of HI-OIP3 (dotted line) and LO-OIP3
(solid line) are a coincidence. Compared with the measured
data (squares), our results indicate their accuracy for different
biases. Fig. 12(b) plots the HP ADS (a well-known harmonic
balance based circuit solvert [25]{27]) results and measure-

1Advanced Design System (ADS) Simulator, Hewl ett-Packard Company, Palo
Alto, CA. [Online]. Available: http://eesof.tm.agilent.com/products/



HUANG et al.: TIME-DOMAIN APPROACH TO SIMULATION AND CHARACTERIZATION OF RF HBT TWO-TONE INTERMODULATION DISTORTION

ol
,g B
5
Z
Q
=
[ —— LO-OIP3 (our result)
o 0F /e HI-OIP3 (our result)
3 1 OIP3 (measurement)
25 0O
] ] ) ] ] ] ]
0 2 4 6 8 10 12 14
2
Jo (KA/em®)
@
ol
_ 35}
g
s}
o
T :
s (u] —— LO-OIP3 (HP ADS result)
D 30 - S e HI-OIP3 (HP ADS result)
) : O OIP3 (measurement)
25
] ] I | | ] |
0 2 4 6 8 10 12 14
2.
Jo (KA/em)
(b

Fig. 12. OIP3 versus J.. (@) Measurement and our simulations.

(b) Measurement and results with the harmonic balance method.

ment. We find there is over a 1-dBm difference between the
values of HI-OIP3 and L O-OIP. Our measurement is performed
ona2.8 x 12 um?x 104 fingers power amplifier. A multiplier
M = 104 is adopted in both the HSPICE and our simulations.
In our simulations with HP ADS, we find that both of the dif-
ferences for HI-OIP3 and LO-OIP3 always exist and cannot be
further improved to match the measured data well at the same
time.

IV. CONCLUSIONS

We have evaluated and characterized two-tone intermodul a-
tion distortion for the InGaP HBT device operated in RFs. For
theoretical investigations of an RF HBT circuit distortion, the
devel oped method has demonstrated its superiority over the con-
ventional one. Simulation results of the InGaP HBT have been
reported to show the accuracy and stability of thismethod. Com-
pared with the results from the HSPICE simulator and the HP
ADS simulator (harmonic balance approach), our results not
only had good agreement with the measured data, but also pre-
sented excellent computational efficiency in characterization of
RF HBT two-tone intermodul ation distortion.
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